skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Aluru, Srinivas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ponty, Yann (Ed.)
    Motivation: Integrative analysis of large-scale single-cell data collected from diverse cell populations promises an improved understanding of complex biological systems. While several algorithms have been developed for single-cell RNA-sequencing data integration, many lack the scalability to handle large numbers of datasets and/or millions of cells due to their memory and run time requirements. The few tools that can handle large data do so by reducing the computational burden through strategies such as subsampling of the data or selecting a reference dataset to improve computational efficiency and scalability. Such shortcuts, however, hamper the accuracy of downstream analyses, especially those requiring quantitative gene expression information. Results: We present SCEMENT, a SCalablE and Memory-Efficient iNTegration method, to overcome these limitations. Our new parallel algorithm builds upon and extends the linear regression model previously applied in ComBat to an unsupervised sparse matrix setting to enable accurate integration of diverse and large collections of single-cell RNA-sequencing data. Using tens to hundreds of real single-cell RNA-seq datasets, we show that SCEMENT outperforms ComBat as well as FastIntegration and Scanorama in runtime (upto 214× faster) and memory usage (upto 17.5× less). It not only performs batch correction and integration of millions of cells in under 25 min, but also facilitates the discovery of new rare cell types and more robust reconstruction of gene regulatory networks with full quantitative gene expression information. Availability and implementation: Source code freely available for download at https://github.com/AluruLab/scement, implemented in C++ and supported on Linux. 
    more » « less
  2. Cowen, Lenore (Ed.)
    Abstract MotivationGene network reconstruction from gene expression profiles is a compute- and data-intensive problem. Numerous methods based on diverse approaches including mutual information, random forests, Bayesian networks, correlation measures, as well as their transforms and filters such as data processing inequality, have been proposed. However, an effective gene network reconstruction method that performs well in all three aspects of computational efficiency, data size scalability, and output quality remains elusive. Simple techniques such as Pearson correlation are fast to compute but ignore indirect interactions, while more robust methods such as Bayesian networks are prohibitively time consuming to apply to tens of thousands of genes. ResultsWe developed maximum capacity path (MCP) score, a novel maximum-capacity-path-based metric to quantify the relative strengths of direct and indirect gene–gene interactions. We further present MCPNet, an efficient, parallelized gene network reconstruction software based on MCP score, to reverse engineer networks in unsupervised and ensemble manners. Using synthetic and real Saccharomyces cervisiae datasets as well as real Arabidopsis thaliana datasets, we demonstrate that MCPNet produces better quality networks as measured by AUPRC, is significantly faster than all other gene network reconstruction software, and also scales well to tens of thousands of genes and hundreds of CPU cores. Thus, MCPNet represents a new gene network reconstruction tool that simultaneously achieves quality, performance, and scalability requirements. Availability and implementationSource code freely available for download at https://doi.org/10.5281/zenodo.6499747 and https://github.com/AluruLab/MCPNet, implemented in C++ and supported on Linux. 
    more » « less
  3. Graph-based genome representations have proven to be a powerful tool in genomic analysis due to their ability to encode variations found in multiple haplotypes and capture population genetic diversity. Such graphs also unavoidably contain paths which switch between haplotypes (i.e., recombinant paths) and thus do not fully match any of the constituent haplotypes. The number of such recombinant paths increases combinatorially with path length and cause inefficiencies and false positives when mapping reads. In this paper, we study the problem of finding reduced haplotype-aware genome graphs that incorporate only a selected subset of variants, yet contain paths corresponding to all α-long substrings of the input haplotypes (i.e., non-recombinant paths) with at most δ mismatches. Solving this problem optimally, i.e., minimizing the number of variants selected, is previously known to be NP-hard. Here, we first establish several inapproximability results regarding finding haplotype-aware reduced variation graphs of optimal size. We then present an integer linear programming (ILP) formulation for solving the problem, and experimentally demonstrate this is a computationally feasible approach for real-world problems and provides far superior reduction compared to prior approaches. 
    more » « less